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Final Report 

Modeling, Identification, and Control Design 
for a Flexible Pointing System with Embedded Smart Materials 

by 

Farshad Khorrami, Principal Investigator 
and 

S. U. Pillai and S. Nourbakhsh, Co-Principal Investigators 
Six Metrotech Center 

Polytechnic University 
Brooklyn, NY 11201 

Summary of the Effort 

The research effort emphasized system identification, decentralized control design, 
and their applications to smart structures and flexible pointing systems. The research 
effort had both theoretical and experimental ingredients. On the theoretical side, new 
system identification techniques for nonrational systems, which may be either min- 
imum phase or nonminimum phase, were developed. The identification techniques 
complemented our efforts on theoretical modeling of systems with embedded and/or 
surface mounted smart materials. Having attained a theoretical model for systems 
at hand, robust linear and nonlinear control techniques are utilized for performance 
enhancement. The control strategies are robust to structured and unstructured per- 
turbations of the system dynamics. The control design methodology are based on 
a decentralized framework. This provides local decision making through the smart 
structures when multiple sensors and actuators are present. On the experimental side, 
we fabricated several smart composite tubes with piezoelectric sensors and actuators. 
One such tube (with surface mounted piezoceramic sensors and actuators) was used 
to replace part of the existing weapon pointing setup, namely ATB-1000, at the Army 
Research Laboratory at Picatinny Arsenal. Furthermore, we have developed similar 
experimental setups including a two-link flexible arm with piezoelectric sensors and 
actuators at the Control/Robotics Research Laboratory (CRRL) at Polytechnic. The 
organization of the final report is as follows: a) the decentralized control design frame- 
work developed is reported first, b) the system identification for non-minimum phase 
systems is presented next, c) lastly a brief outline of our experimental effort is given. 

Keywords: Nonlinear and Decentralized Control, Adaptive Control, System Identi- 
fication, Non-minimum Phase Systems, Smart Structures. 
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Decentralized Adaptive Output Feedback Design for Large-Scale 
Nonlinear Systems 

1.1    Introduction 

Recently adaptive control techniques have been utilized for decentralized control 
of systems with uncertain interconnections bounded by first order polynomials[l-7]. 
The first available result on decentralized adaptive state feedback control for higher 
order interconnections was reported in [8]. A major structural restriction in [7,8] is 
that to ensure global stability, the interconnections must lie in the span of the input. 
Results on decentralized adaptive control for linear systems with subsystems having 
arbitrary relative degrees are presented in [1-4]. For higher order interconnections, 
the strict matching restriction was relaxed in [9], where decentralized adaptive state 
feedback controllers were designed using tools from centralized nonlinear control [10]. 

Relatively few results on decentralized output feedback are available in the liter- 
ature, and still fewer for the adaptive case [5-7]. Recently, based on adaptive output 
feedback design in the centralized case [11], a decentralized adaptive regulator was 
designed for in [3] for systems of the observer canonical form. In all these output 
feedback schemes, the interconnections are assumed to be bounded by Lipschitz type 
bounds. 

In this report, global decentralized adaptive output feedback controllers are de- 
signed for large scale nonlinear systems of the output feedback canonical form. We 
consider both parametric and dynamic uncertainties in the interconnections under 
the assumption that the interconnections are bounded by unknown pth order poly- 
nomials. In addition, we also consider bounded, unmeasurable disturbances entering 
the system. The design starts with the construction of decentralized filters for state 
estimation for each subsystem. The estimation error, however, is not exponentially 
convergent due to interconnections and disturbance terms. Utilizing techniques from 
[10,12], a systematic procedure is developed for design of an adaptive, decentralized 
controller which, through injection of nonlinear damping1, guarantees global uniform 
boundedness of the tracking error and all the states of the closed-loop system to a 
compact set, and also provides good disturbance rejection properties. The size of the 
compact set can be made arbitrarily small through proper choice of the control gains. 
A higher order composite Lyapunov function is employed to prove global decentral- 
ized stabilization. Furthermore, while the majority of output feedback schemes in the 
centralized case can handle only linear parametric uncertainties, the proposed scheme 
incorporates both parametric and dynamic uncertainties in the interconnections, and 
the uncertain parameters may appear nonlinearly in the vector fields. In addition, the 

1The nonlinear damping terms designed in this report are different from those obtained by Kanel- 
lakopoulos et.  al [10]. 



proposed scheme requires adaptation of only one scalar parameter for each channel 
in contrast to [11], where the number of adaptations is the same as the number of 
uncertain parameters. Furthermore, no controller redesign is required if additional 
subsystems are brought on-line or taken off-line. Global asymptotic properties are 
attained for the case where the objective is regulation. 

1.2    The Class of Large-Scale Nonlinear Systems 

We consider a large-scale continuous time affine nonlinear system comprised of N 
channels (agents) given by 

N 

x   =   f(x) + YJ9'(x)ui + P{x)UJ(t) 

y3   =   h3{x)      1<J<N (1.1) 

where x £ 1Zn is the state vector for the overall system, u,- 6 1Z and ?/,- € 1Z are 
the input and output for the ith subsystem, and uj(i) is a bounded unmeasurable 
disturbance signal. The vector fields /, p, g^ and the function h3 are assumed to be 
smooth on Kn, with /(0) = 0, p{0) = 0, h3(0) = 0, and g{(0) ^ 0. Only the output 
yi is available for feedback to the ith control channel. 

The decentralized scheme proposed in this report is applicable to a class of large- 
scale nonlinear systems which are transformable via a global diffeomorphism 

z = [ZU...Z1KIZ12...ZNI...ZNKN]    = $(X);     $(0) = 0 

into the output-feedback canonical form: 

zu   =  zt2 + (fn(yi -.-VN) + £n(y\ ■■ -yN)u(t) 

zi<Pi-i    =   Zitpi+<pitPi-1(yi...yN) + ZitPi-i(yi...yN)u)(t) 

zl>P>    =   ziiPi+i + (pi<Pi(yi ...yN) + £i,Pi(yi ■ ..yN)u(t) + bi,K,-Pt6i{yi)ui 

Zt,K,    =   <Pi,Ki(yi ...VN) + &,Ki{yi ■ ■ ■ VN)u{t) + bioSi(yi)ui 

yt   =   zu,     l<i<N (1.2) 

where /tt-, 1 < i < N are the observability indices with K\ > K2 > ■ ■ ■ > KN > 1 and 
Y2iLi Ki — N, and b{iKi-Pi ... 6to are unknown constant parameters. The coordinate- 
free necessary and conditions for transformation of (1.1) to (1.2) are given in [14]. 

We consider both parametric and dynamic uncertainties in the terms (fijivi • ■ ■ VN) 

and £ij(j/i .. -VN), 1 < i < N, 1 < j < /c;. Specifically, we assume that <£>,•_,-, £,-j are 
unknown except that they are bounded by an unknown pijth order polynomial in 
outputs, i.e., 



Ivtjfal 
Pi}    N N 

VN) <EE&Nlfc;     Mii(yi~-VN)\\<Y,E4i\\y'\ (1.3) 
it=o ;=i k=01=1 

with ^7 and vK unknown. 
Remark 2.1: Note that (ftj and £,-j may be nonlinearly parameterized in the un- 
known parameters provided condition (1.3) is satisfied. Also, only the quantity 
p  =  maxi<t-<;v; i<j<«, Pij needs to be known. 

To avoid losing insight of the underlying idea of this report, we assume that the 
parameters bij, 0 < j< «,; — />,-, 1 < i < TV, are known. The case of unknown bij can 
be treated identically as in [11] where the following assumptions are made: 
Assumption (2.1): The sign of &,>,_,,, is known. 
Assumption (2.2): The polynomial Bi(s) = bi:Kt~Pis

Ki~Pi + • • • + bus -f 6,-0 is strict 
Hurwitz (exponential stability of the zero dynamics). 
Assumption (2.3): £,-(y,-) ^ 0, 
Assumption (2.4): The reference signal yIi7-e/ and its first pi derivatives are known 

and bounded with y\p^L piecewise continuous. 
For known b^, we assume assumptions (2.2), (2.3), and (2.4) to be true. 

1.3    Decentralized Adaptive Design 

The decentralized adaptive control scheme is designed for the transformed system 
(1.2). Since only the ith. output (y,-) can be utilized for feedback to ith control 
channel (u,), we need to design an observer to estimate the remaining states of the 
zth subsystem. However, an observer with linearizable error dynamics cannot be 
designed in this case due to parametric and dynamic uncertainties in the ipij terms 
in (1.2). Even if the exact form of ipij is known, in the decentralized context, the 
presence of unmeasurable outputs from other subsystems y^, 1 < k < N\k ^ i makes 
it impossible to obtain a linearized error dynamics. However, as will be shown in 
the ensuing design procedure, the observer error can still be made to converge to 
zero asymptotically using nonlinear damping terms in the control. The systematic 
design procedure presented here employs tools from the nonlinear design toolkit by 
Kanellakopoulos et al.[10]. 

The ith subsystem (1.2) can be written as: 

Zi = AiZi + kiyi + ifi(yi ...yN) + £(ya ... yiv)w(i) + biSi(y1)ui 

where 
;i-4) 

A; 

T 
^   = 

-kn 

I 
■kitKi   0   •■•   0 

,    fct — 

h\ 

^i,ni 

,   bf = 0 0   bitKi-Pi JiO 

Vii   • • •  ¥i,Ki   >  Zi = \ 6i   • • •  &,«,■   ■ 



The gains fct- are chosen such that A{ is a strict Hurwitz matrix. 
We define the estimate of the states Z{ as 

Zi = AiZi + kiyi + bi6i(yl)ui. (1.5) 

The observer error e,- = z; — lt- is given by 

e,- = A,-e + ipi(yi ...yN) + &(j/i • • ■ S/wM*)- (1>6) 

Since A,- is a strict Hurwitz matrix, given a positive definite matrix Qj, there exists a 
positive definite solution P; to the Lyapunov equation 

AjPt + PtAi = -Qt. (1.7) 

In the following, we assume uniform relative degree for each subsystem (pi = p, 
1 < i < N) in order to reduce notational complexity. The case where the relative 
degrees are different for each subsystem can be treated similarly. 
The ensuing systematic design procedure involves at each step, augmenting an inte- 
grator and the design of a virtual control law to stabilize the augmented system, until 
the actual control appears at the pth step. 

Step 0: Define the tracking error for the zth subsystem as xn — zn ~ Ui,rej = Vi — 
Tio(yi,ref)- Expressing z^ in terms of its estimate as z;2 = ^2 + ^2? we obtain 

Xn = Zi2 + fn(yi ■■■VN) + 61(2/1 • ■■VN^it) - Vi,ref + e,-2,    1 < i < N. (1.8) 
The following virtual decentralized control law z^ for the ith subsystem (1.8) is pro- 
posed 

Zi2 = -ITilXil ~ ßiXil ~ HQiiXil + Xn'1) + Vi.ref = Tn(Xil,ßi) + Vi,ref (1-9) 

where Qi > 0, ßi is a time varying adaptation gain to counter the effects of the 
interconnections, TTH is a constant gain whose magnitude will determine the ultimate 
bound on the tracking error, and 7; is a constant gain given by 

7.=(^ivp.,)E^=(i+2jv;'-)p'r1)(2p+1)- ("»> z       fc=i vi 

Since Z{2 is not the actual control, define: 

Xi2 = Zi2 - Tn(xil,ßi) - Vi,ref- t1-11) 

Therefore, xn = Xi2 + ^i(x*i,ßi) + <pn{yi ■ ■ ■ VN) + 61(2/1 • • ■ VN)u{t) + ei2. 
Let ß* be the desired value of the control gain ßi to counteract the effects of the 
interconnections. The following adaptation for ßi is used 

k = rigiJ2kxli-^m (1.12) 
fc=i 



where <7; > 0 incorporates the standard "<x modification" used in robust adaptive 
control to avoid parameter drift. The true value of ß* required to counter the effects 
of the interconnections is obtained in the final step. 
Consider the following composite Lyapunov function for the sub-subsystems (1.8) 

v0 = E UP& + E eix% + r-1^- - ßl)2} (1-13) 
i=\ l k=i ) 

where I\ is a positive constant.   Differentiating Vo along the trajectories of Xii, we 
obtain 

^o = E {-zjQiti + 2ef Pi (^-(yi ...yN) + Uyi • • • 3/JVM*)) + E 2^Xrt-1[x!2 
i=i I fc=i 

+r,-i(x.-i, Ä) + e,"2 + ^i(2/1 • • • 2/iv) + &i(*/i • • • 3/JVM*)] + 2I71(# - #)&} 

TV 

<   E {-Am,n(<5i)||e,-||2 + 2||e8||||P|| (||¥>,-(r/i. • • yjv)|| + ||6fai.. .yjvMOII) 

V V 

-2TrilQi E xli + E 2^ftXa-1[X«2 - jiQiixn + xT1) ~ ßiXn + ^2] 
k=l k=l 

+ E 2kgt\\Xti\\
2k~1{\\Myi •■■yN)\\ + ||6i(2/i ■ • • yjvMOII} 

fc=i 

+2(Ä-/?;){r-1Ä-ftE^}|- (1-14) 
fc=l J 

Utilizing the bounds (1.3) and inequalities 

2ab<a2 + b2; (1.15) 

fE «^V < fE «*) fE &*); (i-i6) 
\fc=i    /     \fc=i  / \fc=i / 

JEW)   <2*EHfc> (1-17) 

the terms in (1.14) can be bounded as 

EE2*ftllXrtir*-1|k-i(yi...yAr)|| <Ei;2A:ft||x,-iir*-1 E ECfeltoll*1   (Using (1.3)) 
t=i fe=i t'=i it=i fc1==ij=i 

N    pn     N       (   p ~\ 

= EEE2  E^llxiill"-1  C&M* 
i=ifc1=ij=i   ifc=i J 



N    pa     N    ( /  p \2 

<   EEE       Ey^ir]   + (<&)   \\y:\\2kl\    (Using(1.15)) 
t'=l fc!=li=l   ( \fc=l 

N    p,\     N       p p N   Pii 

<EE E(E^2HEllx.-ill4*-2} + E E«Mfce/ll + llx.-ill)" 
j=ifc1=ij=i fc=i       fc=i t=i fc=i 

A" 

(Using (1.16));   ^fc = £ fe 
J=I 

iV TV 

< £ WE llxdi4*-3 + EE^^iiy^n2* + EE2"^*iix.-ill 
4 = 1 fc = l 1 = 1  fc = l 1 = 1  fc = l 

iVp2lp(p + l)(2p + 1 

2A: 

(Using (1.17));   7.i=%Ei3 = 
/c=l 

Similarly, 

i=i fc=i 

<   E W £ llx.-i||4*-2 + £ £ 2ikvuk\\yitreJ\\2k + £ £ 22kvuk\\xn\ 
i=l jfc=l i'=l fc=l t'=l fc=l 

AT 

with 7a as in (1.18);   vllk = £ (umaxUjU 

3 = 1 

2k 

;i.l8) 

(1.19) 

N     p 

t'=l fc=l 
E 

t=l       kfc=l 
EEzÄftx?!*-1^ < E2 E^.-llx-iir*-1 IM 

" rf 
AT 

< Efp(p + i)(2p + i)Ellx.-iir-2 + EINI2. 
i=l   D A;=l i'=l 

(1.20) 

AT iV iV 

E2||£8||(||P!||||^(?/i...yiv)||)<Ell^ll2 + Ell^iril^(2/i---?/iv)lP 
i=l i=l i=l 

AT AT    K, 

< Elixir+ EEII^IIaIK-(yi--.yN)||2 

l=i i=i j=i 

W iV    K,    Pij    AT 

< Eii^ir+EEEEii^irfe) 11*11" (^ng(i-m 
»=i i=i j=i fc=i ;=i 

< Ell^ll2 + EE^II^II2fc;   where^ = £||p;||
2E(cjr 

1=1 1=1 fc=l 1=1 j=\ 



< ENl2 + E E22fc^l|y.,re/ii2fc + EE^llxüir, (1-21) 
i=l t'=l k=l i=l fc=l 

jV N N     P 

E2||Q||(II^IHI6(2/i---yivMt)||)<^||e8||
2 + EE22^ll^e/ir' 

t'=l i=l i=l /c=l 

+ EE22fc^llxdl2/c; «•■* = ElixirE(^-4-)2- (L22) 
i=l k=\ 1=1 j=l 

With adaptation (1.12) and utilizing the bounds (1.18)-(1.22), and noting that 7; = 

7i'i + \ YX=I k2-, % may be written as 

N   ( v v 
Vo < E     -{*min(Qi) - 3}||et||

2 - 27Tilft E Xü   + E ^QaT1Xi2 

+27^2 E IIXü|[4fc-2 - 27J£
2
(XU + XT') E X2!^1 - 2*(Ä - ff)Ä 

+ £22*(d* + vlk + <*lrt + «lrt)(||x.iirfc + lk-/P) -2# ft E*x?*}  (1.23) 
k=\ k=l        ) 

<   E (-{Am,n(Q0 - 3}||e,||2 - 27T,lft E Xü + E 2^»X2ifc_1X,2 - cr,-(# - ß*f 
i=i I fc=i fc=i 

+ ^'pf + E 22"(^ + Vik + duk + ^)(||Xil||2* + lkre/||2fc) - 2ß?6i £ M^) 
A;=l fc=l J 

Inequality (1.24) is obtained from (1.23) by completing squares of the (ßi — ß*) terms 
and using the fact that the resultant of the first two terms in the second line of (1.23) 
is negative. 

The state equations for Xu, X«2 are given by 

Xti    =   Xi2 + T,-i(xti, ßi) + Vii(yi • ■ • VN) + &i(j/i • ■ • VN)u(t) + ei2 

3 + / 

9T,-I 

Xi2      =      ^3 + fci2(2/t - Ztl) -  ■7TJ—{Xi2 + Tn(Xil,ßi)} -  -Zjrßi - Vi,ref 
"XU dßi 

fl   -{<pn{yi■ ■ -VN) + Zn(yi■ ■ -yN)u{t) + ^2} 
OXil 

=     zi3 + Si2\lli-, 2il) zi2) Pi) Ui,refi Vi,reSi J/i.re/J 

+a7t2(Xii> Ä){£t2 + Vii(yi • • • 2/iv) + £(yi • • ■ J/yvMO}- (1.25) 

Remark 3.1: The terms (duk + vnk)\\xn\\2k m ^o arise due to the interconnection 
and disturbance terms appearing in the state equations of the plant (see e.g., (1.8), 
(1.25)). However, as can be seen from (1.24), these terms are in the span of the control 

9 



and can be countered using sufficiently high control gain ß*. In the subsequent 
steps, additional terms of the type (.)l|Xti||2fc will appear due to disturbance and 
interconnections. The desired value of ß* to counter these effects is assigned in the 
final step. Similarly, possibly destabilizing disturbance and interconnection terms 
arise in the observer error dynamics (1.6). These appear as (djk + t>ifc)||x»i||2fc in 
the Lyapunov function and can again be countered by injecting nonlinear damping 
through ß*. 
The design procedure can now be made recursive as shown in the following step: 
Step m ( 1 < m < p — 2): In steps 0 to m — 1, the virtual controls Tu ... r,-)m were 
designed. In the m — 1th step, x»',m+i is defined as the difference of Zi,m+i and T;im, 
i.e., 

Xi,m+1  = zi,m+l ~~ Tim(yi, zi\ ■ ■ ■ zi,m, Pi, Vi,rej • ■ ■ Vi^efJi (1.2,0) 
The dynamics for Xi,m+i are given by 

_   » | / » a (m+!)\ 
Xi,m + 1  — zi,m + 2 T Si,m + l(yi, zil ■ ■ ■ zi,m+l, Pi, Vi,ref ■ ■ ■ Vi^ef    1 

+ &i,m+l{yi, ZU... zi,m+\,ßi, Vi,rej ■ ■ ■ 2/8>e/    ){Ci2 + <i°il(j/l ■■■VN) 

Hn(yi---yNMt)} (1.27) 

where the notation in (1.27) is similar to that used in (1.25). We consider Zi>m+2 
as the virtual control for the (xn • ■-Xi,m+i) sub-subsystems and use the following 
composite Lyapunov function for this subsystem: 

Vm = Ki-i + £x?,m+i- (L28) 
8 = 1 

Differentiating along the trajectories of (xn ■ ■ ■ Xi,m+i), we obtain 

N 

vm < £ 
i=i 

{XminiQi) - (m + 2)}||e,-||2 - (Tiißi - ß*f - 2irilßi £ xf ~ 2 E^iX?,- 
k=l j=2 

+ 2Xi',m+l \zi,m+2 + Xim + ?i,m+l [Vi, zi\ ■ ■ ■ zi,m+l , Pi, Vi,ref • • -Vi^ref    )) 

+ 2Xi',m+l^7i,m + l(2/i) zi\ ■ ■ ■ zi,m + l, ßi, Vi,ref ■ ■ ■ Vi^ef    ) 

{£i2 + <pn(yi ■ ■ ■ VN) + &l(j/l ■ ■ ■ VNp(t)} 
V 

+ £ 22k{dlk + vlk + m(dlik + ui.-*)}{||x.-i||2fc + ll!/.>e/ir*} 
k=i 

+atßf - 2ß*gt £ kX 
2k 
i\ 

k=l 

;i.29) 

Note that for m = 1, instead of the term 2XJ2XI'I in (1-29), we have 2\i2 Yfk=i kßixli -1- 
Utilizing bounds (1.3) and inequalities (1.15)-( 1.17), the terms in (1.29) may be 
bounded as 

10 



N N 

t'=l i=l 

(1.30) 

TV TV N    N   Pn 

E 2Xi,m+l&i,m+l<Pil(yi ■ ■ • J/JV)  < E Xlm+l^tm+l + E E E (Cijl) 
i=l j=l k=\ 

|2fc 

i=\ i=l 

N N   pn n      P 

< ExUi^m+i + EE22^ll^e/irfc + EE22^llxdl^,        (1-31) 
s=l t'=l fc=l t'=l fc=l 

AT 

E2Xt>+lro;,m+l&l(2/l • • • 2//V MO 
t=l 

n      p 

<    E xUi-Ui + E E 23*t;1,-fc||yiire/||
2* + E E 22W|M 

t=l t'=l fc=l t'=l k=\ 

2k (1.32) 

where c?l8-fc, vuk are as in (1.18) and (1.19). Using (1.30)-(1.32), Vm is written as 

TV 

vm < E 
i=i 

{Ami„(go - (m + 3)}||e!||
2 - a^ - ß*)2 - iKllßl £ xik - 2 I>;x 

fc=i j=2 

(m+l)x 
+ 2Xi,m+l{^i,m+2 + Xim + Q,m+l(yi) Zjl • • • Zi,m+li ßi, ?/t,re/ • ■ • Vi^ef 

i 2 ( o (m+1)\\ 
+ Xi,m+l^7iim+llyi, Zi\... Zhm+1,Pi, yisef ■ ■ ■ Vi^ej    )f 

P 

+ J2 22h{dtk + vik + (m + l)(dUk + vUk)}{\\Xti\\
2k + ||^,re/||

2fc} 
k=i 

+atßf - 2ßtQi E kxa 
k=\ 

With it)m+2 as the virtual control for the (xii ■ ■ ■ Xi,m+i) subsystem, we choose 

Zi,m+2     =      —  [""i,m+lXt,m+l + Xim + ^',m+l(j/i, Zj'l • • • ^t',m+l) ft) J/i,re/ • • ■ 2/i,re/    ) 

i 2 / a (m+l)\ 
+ Xi,m + l^7i,m + i (,2/i, Zu . . . 2,,m+l, Pi, J/i,re/ • • • Vi,ref    I 

(1.33) 

A (m+l)x 
1~i,m + l\yii Zil ■ ■ • ^i,m + li Pi: Vi,rej ■ ■ ■ Vitref    ) 1.34) 

with 7T8,m+1 > 0. Define: x«>+2 = ziym+2 - Tijm+i(?/,-, z,\ ■ ■ ■ z;,m+i, Ä, Vi,ref ■ ■ ■ y™tf   ) 

Then, Vm is given by 

TV 

vm < E 
i=l 

m+1 

■{Amm(^) - (m + 3)}||e8||
2 - <r,-(# - /?*)2 - 27rüft £ x?* - 2 £ ^x 

fc=i j=2 

+ 2Xi,m+lX.\m+2 + X] 22^{^ + Vik + {m+ l)(duk + VUk)}{\\Xil\\2k + l|ZA\re/||2fc} 
fc=l 
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+<nßf - 2ß*Ql £ kX% 
fc=i 

;i.35) 

Step p — 1; In step p — 2, Z{tP was derived as the virtual control input 

(= Ti,p_i(j/t-, zu ... zitP-Ußi, yl:Tef ... y\%}')) for the (xn ■ ■ ■ Xi,P-i) subsystem. Define 

  _ / * a (p-l)\ 
Xi,p — zi,p       Ti,p—l\y%^ zil • ■ ■ zi,p—li Pit Vi,ref ■ ■ ■ Uitref  )• 

The actual control input U{ now appears in the state equation for Xi,pi i-e-) 

Xi,p — Oi,K,-pOi\yi)ui ~T zi,p+l    i   Si,p{yi, zi\ ■ ■ ■ zi,pi Pi-, Vi,rej • ■ • Vi^ef) 

+whP(yi, zn ... zhP, ßu y^ref ... y \^e}) { el2 + ipn(yi ...yN)+ 61(2/1 • • • yjv)w(*XM6) 

The composite Lyapunov function for the overall system is given by: Vp-\ = Vp-2 + 
TN   Y2 
1—11=1 Ai,p' 

Differentiating Vp-\ along the trajectories of the (x;i • • • Xi,p) subsystem and following 
steps similar to (1.30)-(1.32), we obtain 

N p-1 

Vp-i    <   £   -{*min(Qi) ~ (p + 2)}\\e%\\
2 - a%(ßt- ß*)2 -2-Kllß%Y,xli - 2 5>fi4 

i=i L fc=i i=2 

+1XiAK*i-A{yi)ui + Zi,P+l + Xi,P-l + ft,p(j/i, Zil--- zi,p, ßi, Vi,rej ■ ■ ■ 2/t>e/) 

+ Xi,P&lp{yi, Zil ■ ■ ■ ZhP, ßi, Vi,ref ■ ■ ■ Vi'ref)} + a^f 

+ J2 22k{dtk + vik + p(dltk + vuk)}{\\xn\\2k + ll^e/H2"} - 2ß*ßl J2 ^(l-37) 
fc=l fc=l 

The following decentralized control input U{ is now applied for the ith. subsystem 

Ui *j ^i,pXi,p   1   zi,p+l T Xi,p-1 T Q.pvJ/i) ^tl • • ■ zi,pi Pi, Vi,ref ■ ■ ■ 2/i,re/ > 
bitKi-pSi(yi) 

+Xi,p^lP(yu zu--. zitP, ßi, yt,rej ■ ■ ■ y\%})} (1.38) 

The properties of the above designed decentralized control law are stated in the 
following theorem. 

Theorem 1.3.1 Suppose that the system (1.1) is transformable to the observer 
canonical form (1.2) and satisfies assumptions (2.2) — (2.4). The decentralized control 
(1.38) along with adaptation law (1.12) for ßt results in global uniform boundedness of 
all the signals of the closed-loop system comprised of the plant (1.1) with disturbance 
w(t), the observer (1.5), the adaptation gain ßi and the control input Ui (1 < 1 < N). 
Furthermore, the disturbance signal does not affect the tracking error (?/,- — y;,re/) 
and the error can be made arbitarily small based on appropriate choice of the control 
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gains -Kij. For the regulation problem, global regulation of the states of the plant and 
observer is achieved. 

Proof of Theorem 1.3.1: With the control (1.38), we first show the existence of 
ß* to counter the effects of the interconnections. One such choice is given by 

ß* > — max {dik + vik + p(dXlk + vltk)}. 
Qi k=\...p 

With \min{Qi) = 2iri0 + p + 2, 7ri0 > 0, we obtain 

N 

Vp^(e,Xi...XPJ)<E 
! = 1 

P 

-27rt0|h||2 - 27r,-lft £ Xn - 2 £ *axli ~ <ßi ~ ßtf 
k=\ 3-2 

-\-<7ißf + £ 22k{dik + Vik + p(duk + Vlik)}\\yi,ref\ 6     \«ifc T Vik T fjyuuk T uiik)S\\yi,ref\\ 

fc=l 

<    -fiVp-1(e,xi...XpJ) + *l> (1-39) 

where Xj = [xij ■ ■ ■ XN3}, ß = [ßi ■ • • Äv] and 

^ = ,rär (min{27r«'0^mL(^f), 27TÜ . . . 27r,-p, r,-(T,-}) (1.40) 
l<t<W   v ' 

I 
i=l  *> jt=l 

V» = E 1 a'Ä*2 + E2"{4 + ^ik + p{duk + ui,-fc)}||y,>e/||
2* f • (1-41) 

1), 

V> is bounded since /?* and yrej are bounded. Thus, Vp-i(e,Xi ■ • -Xpiß) decreases 

monotonically along the solutions of the (e, Xi • • • Xpi ß) dynamics until it reaches the 
compact set 

(e,Xi ■■■XpJ)e TÄi K*xKNx...xKNxnN: Vp^{e,Xi ■■■XP,ß)< V/}       (1.42) 

where Vj = p~lip. Thus, the solutions (e, Xi • • ■ Xpi ß) are globally ultimately bounded 
with respect to the bound Vf. The boundedness of other signals is established as 

follows. Boundedness of zn(= yi) and r,-i(xii,A) follows from that of x;i> A and 
yitref- Since Xt'2 is bounded, from (1.11) we have bounded Z&. Iteratively, from 

boundedness of yi: zix... zim, yhrei ... y\ye}, ßi, x*,m+i, and from (1.26), boundedness 
of £;,m+i is established V 1 < i < JV, V I < m < p — 1. Since e; are bounded, we 
obtain bounded zu ... Zip. 

To prove boundedness of ZiiP+i ... z!)Ki, we use the transformation, rji = Tzi, with 

{nn ■■■rlip) = izii ■■■Zip) and 

rjij    =   Zij - zip, j = p- 1 ...Ki (1.43) 
®i,Ki — p 
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to obtain 

Vij    =   Vij+i + Vfi(yi • • • VN),     3 = 1 • • • P ~ 1 

r/ip   =   r}iiP+i +   %'Kt~p'~ T]itP + <pi,p(yi ...yN) + bitKi-p6i(yi)ui 

"i,i*i-j |   ^      I   "j'iKi-j-1 "i,K.i-jOi,Ki- 
Vij  =  -r^^+i + 'iv)  L ,2 

■p-i 

ul,K,—p {      ul,Ki—p ul l,Ki-p 

+ \<pi,P+i(yi■■■VN)- T^-^tpiAvi■•■VN)?,    j = p + i...Ki-i 
\ i-i^i—p ) 

ho                     &i(A>;-p-i      j        /              N,        &;,o / nlm 
»/.-,«,•    =   -7 Vi,p+i ~ ^p—r2 + \ Vt'^lJ'i ■ • • !/N) - 7 Vf,p(yi • • • 2/H/p) 

"i,Ki-p °i,K,-p I °«>«i-P J 

The boundedness of (j/i.p+i • •. ^,K,) now follows from (1.44) since r]iiP = z;p and 
(VI-'-VN) (and hence <fij(yi ■ ■ ■ VN)) are bounded, and the zero dynamics are ex- 
ponentially stable (Assumption (2.2)). Thus Z{ = T1-1??; are bounded V 1 < i < N. 
Boundedness of it,- now follows from (1.38) since ZilP+i is bounded and biiKi-pSi(yi) is 
bounded away from zero. Boundedness of the states x of the original system (1.1) 
follows since z = $(x) is a global diffeomorphism. 

The size of residual set 0/ given by (1.42), and hence the tracking error can be 
made arbitrarily small by increasing the magnitude of the control gains 7T,-j. Note 
that, from definitions of p and ip, we have ip oc <7;, p OC <7; and p oc T;. Choosing 

r,- oc ^r, as <Ti ->■ 0, V> -+ 2Efc=i ^W'fc + Mifc)ll2/i,re/||2fc-  Also, from (1.40), IVi will 
i 

increase and the value of p will be determined by the control gains 7r,-j, 1 < j < p. 
Thus, reducing <j{ and increasing 7rtj will reduce the the size of the residual error 
bound Vf = p~rip- 
Regulation: For the regulation problem, yi^ef = 0. In this case, we set Oi in the 
adaptation law (1.12) to zero. Thus, tß = 0. Following the same procedure as in the 
tracking case, Vp-\ is given by 

Vp^(e,Xi...XpJ)<J2 -27rt0||ei||2 - 2ntlgt J2 xfi - 2 £ ^'iX? 
2 
j 

k=\ 3=2 

(1.45) 

which implies that the solutions e,Xi ■ ■ ■ Xpi ß are bounded for all initial conditions 
and for all t. A straightforward application of LaSalle's theorem yields 

lim ti(t) = 0, lim xn(t) = 0; 1 < j < p; 1 < i < N, 
t—KX> t—KX> 

i.e., the tracking error xn — Vi ~~ Vi,ref and the observer error e,- go to zero asymptot- 
ically. □ 
Remark 3.2: In contrast to [11], where p parameters need to be adapted corre- 
sponding to I3j=i Qj^jiy)-* lne adaptive scheme proposed here requires adaptation of 
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only one parameter /?,-. This is true even if the interconnections in (1.2) were given by 

YÜj=\ Öjtpijivi ■ ■ ■ VN) 
as l°ng as <Pij satisfies assumption (1.3). The trade-off, however, 

is loss of asymptotic tracking and utilization of high control gains as in [12] to counter 
the uncertainties. 
Remark 3.3: Even in the absence of the disturbance u>(t), the tracking error would be 
bounded, but nonzero, with a smaller size of the residual set f)/ in (1.42) since vuk = 
Vik = 0 in this case. The tracking error due to disturbance is proportional to comax; 
however, the components (frequencies) of the disturbance signal are asymptotically 
rejected in the output. With appropriate choice of control gains, this error can be 
made arbitrarily small. 
Remark 3.4: An important issue in control of large scale systems is to ensure that 
the existing decentralized controllers maintain stability and robust performance, if 
subsystems are appended to the original system, or taken off-line, e.g., during faults 
in a power system. The design methodology proposed here obviates the need for 
controller redesign as long as the order of the interconnections due to the appended 
subsystem is less than or equal to that of the original system. This is generally true 
for most practical applications where the interconnected subsystems are dynamically 
similar. In any case, defining p as the maximum possible order of all current and 
future interconnections will ensure that the same decentralized controller works for 
the modified system. 
Remark 3.5: From the above design procedure, it is clear that after the Oth step, the 
virtual controls can be assigned independently to each subsystem. Therefore, even 
the case where the relative degrees of the subsystems are different, can be treated 
similarly. 

1.4     Conclusion 

In this report, we have extended the class of large scale nonlinear systems for which 
decentralized output feedback controllers can be designed. The distinguishing features 
of this report which makes it different from all previously reported decentralized 
output feedback schemes are the relaxation of bounds on the interconnections from 
linear to higher order bounds, the mismatch between the interconnections and the 
control, and the ability to reject any bounded, unmeasurable disturbance entering the 
system. The stability and robustness properties attained are global. Although, the 
scheme does not guarantee asymptotic tracking, the bounds on the tracking error can 
be made arbitrarily small through proper choice of control gains. For the case, where 
the objective is regulation, global asymptotic regulation of all the states of the closed- 
loop system is achieved. One potential application of the proposed scheme is in robust 
decentralized design for large-scale power systems with swing angle measurements 
only which is discussed in [14]. 
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2.     Parametrization of Stable Systems from Partial Impulse Response 
Sequences 

2.1    Introduction 

This report addresses the problem of identifying the class of all stable system 
transfer functions that interpolate the given partial impulse response sequence. Al- 
though classical Pade approximations match the given impulse response sequence to 
a maximum extent and are optimal in that sense, the systems so obtained need not 
be stable and hence they may not be attractive from physical considerations. In this 
context, consider the problem of identifying a linear discrete time-invariant, causal, 
stable system with an unknown transfer function H(z) from partial information re- 
garding itself. Since the system is causal, it has a one-sided power series expansion 
given by 

x> 

(2.1) 

(2.2) 

H(z) = 
oo 

k=0 

and stability demands that 

oo 

EN < CO . 

k-0 

It follows from (2.1), (2.2) and uniform convergence that the transfer function H(z) 
is analytic in \z\ < 1 and uniformly continuous1 in \z\ < 1 [1,2]. Clearly, the se- 
quence {/ifc}£L0 represents the impulse response of the system and when the available 
information is of the form hk, k = 0 —> n, the system identification problem in the 
rational case becomes equivalent to a Pade approximation problem. In that case, it 
is easy to show that rational ARMA(p, g)-type approximations that match the given 
data are unique provided p -f q < n (Pade approximation) [1,2]. These approxima- 
tions, however, need not be stable and hence from physical considerations they may 
not be acceptable. For example, consider the stable (minimum phase) transfer func- 
tion H(z) = e~3z . The ARMA( 1,1) Pade approximation of this function is given by 
(2 — 3z)/(2 + 3z), and it represents an unstable system since A\(z) has a zero in 
\z\ < 1. 

In the rational case the identification problem is equivalent to finding the system 
model order (p, q) and the system parameters. Given the partial impulse response se- 
quence, the system model can be established from the invariance of the rank property 

1Note that the use of the variable z (rather than z~l) here translates all stability arguments into 
the compact region \z\ < 1. H{z) is said to be minimum phase if it is analytic together with its 
inverse in \z\ < 1. Since stable functions are free of poles in \z\ < 1, in the rational case they are 
analytic in \z\ < 1. 
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associated with certain Hankel matrices generated from this data. Thus, in particular, 
with hk, k > 0, denoting its impulse response sequence as in (2.1), let 

Hkk 

hi      h2      ■••      hk 

h2      h3     • • ■    hk+i 

hk   hk+i    ■ ■ ■    h2k-i 

(2-3) 

represent the Hankel matrix of size k x k generated from hi, h2, ■ ■ ■ h2k-i- Then, for 
a rational system with degree p, 

rank Hk = rank Hp = p,     k > p (2-4) 

and several singular value decomposition technique have been proposed for model or- 
der selection based on the above rank condition [3,4]. Equation (2.4) shows the linear 
dependence of hp+i, hp+2, • • • on their p previous terms, and it represents the finite 
degree nature of a rational system. Although these techniques have the advantage 
that they can make use of all available impulse response data, they need not lead to 
stable systems. Moreover, the above rank condition is not valid in the case of systems 
that are not rational, since they do not represent finite degree systems. The problem 
in that case is to obtain equivalent finite degree stable rational approximations that 
capture all the key features of the original nonrational system in an optimal manner 
by making use of the given data. Such a rational approximation should interpolate 
the given information, and preferably be of minimum possible degree. 

In this report, we address this problem and obtain closed form solutions for the 
class of all stable transfer functions that interpolate the given partial impulse response 
sequence. Specifically, by making contact with the Schur problem [5] in, it is shown 
in section II that the theory of bounded functions (Schur functions) can be utilized 
to obtain all stable solutions to this problem. In this context, a new model order 
selection procedure is proposed here that utilizes the finite degree property of a ratio- 
nal system. Rational and stable approximation of nonrational systems is described in 
section III, by making use of ideas developed in section II. Although various authors 
have addressed related problems in the past utilizing this approach [6]-[14], some 
interesting new observations will show that rational system identification as well as 
stable rational approximation of nonrational functions can be realized from the same 
formulation of the Schur extension problem. 

2.2    Parametrization of Stable Systems 

2.2.1    The Schur Parametrization 

To start with, a function d(z) is said to be bounded (Schur function), if (i) d{z) 
is analytic in \z\ < 1 and (ii) \d(z)\ < 1, in \z\ < 1. Because of the analyticity in 
\z\ < 1, every bounded function possesses a power series representation of the form 
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d(z) = J2t=o dkzk i \z\ < 11 that is valid in \z\ < 1. lid(z) is rational, then \d{z)\ < 1 
in \z\ < 1 also implies d(z) is free of poles in \z\ = 1 and hence d(z) is analytic in 
\z\ < 1 . As a result d(z) represents a stable system. 

^From Schur's Theorem [5], d(z) defined above represents a bounded function iff 

I-DfcDfc>0,     k = 0^oo, (2.5) 

where 

D, 

/ do 

d2 

du   d 

0 

do 
di 

fc-i 

0 
0 

d0 

d fc-2 

0 \ 
0 
0 

do J 

(2.6) 

represents the lower (or upper) triangular Toeplitz matrix generated from c?,-, i — 
O^k. 

Given a partial set of coefficients dk , k = 0 —> n, that satisfy I — DnD* > 0, 
"the problem of coefficients" is to obtain all bounded functions d(z) such that the 
power series expansion of d(z) matches the given coefficients, i.e., d(z) = ^_0 d^zk + 
0{zn+l). 

An algorithm introduced by Schur in this context answers this problem and it 
forms the basis for our approach to the present parametrization problem. As Schur 
has first observed, if d(z) represents a bounded function, then, so does the function[5] 

d^z) ± i d{z)-d(0) 
z    1 - d*(0)(f(z) ' 

d{0) = d0 (2.7) 

In the rational case, since z = 0 is not a pole of di(z), from (2.7) we obtain that 
the degree2 of the new bounded function d\(z) never exceeds that of d(z), i.e., 

Sid^z)) < 6(d(z)) (2.1 

with inequality iff the \j z factor in (2.7) cancels a pole of (d(z) — d0)/(l — d^d(z)) [17]. 
Since this cancellation can occur only at z = oo, from (2.7)-(2.8), degree reduction 
happens iff the denominator term 1 — d(0)*d(z) satisfies 1 — d*(0)d(z)\z=(>o = 0, or 

Sid^z)) < 8(d(z))   <&   d{z)d*(z)\z=0 

where 

A 
d,(z) = d*(l/z*) 

(2.9) 

(2.10) 

2The degree S(H(z)) of a rational function H(z) equals the totality of its poles (or zeros), with 
multiplicities counted, including those at infinity. 
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is defined to b^ ehe paraconjugate form of d(z). Clearly, the paraconjugate form 
represents the ordinary complex conjugate operation on the unit circle. 

The bilinear transformation in (2.7) maps the inside of the unit circle onto itself. 
Thus, in general, with dk{z) representing an arbitrary bounded function and with 

Sk = dk(0), (2.11) 

(2.7) translates into 

dlc+1(z) = --  MZ)~?\,    k>0 (2.12) 
z    l-skdk{z) 

with the understanding that d0(z) = d(z). The above Schur algorithm can be recur- 
sively updated and after n such steps, we get 

d(z)  =   M*0 + z5n(ZK+l(*) ,2  13x 
an(z) + zbn(z)dn+i(z) ' 

where an(z) and bn(z) are in general two polynomials of degree n, and 

än(z) = znan*(z) = zna*n(l/z*), (2.14) 

bn(z) ± znb^{z) = znb*n(l/z*) (2.15) 

represent polynomials reciprocal to an(z) and bn(z) respectively that satisfy the re- 
cursion 

an(z) = an-i(z) + zsnbn_i(z),     n>l (2.16) 

and 

bn(z) = bn-i(z) + zsndn_i(z),     n > 1. (2.17) 

an(z) and bn(z) are defined to be the Schur polynomials of the first and second kind 
respectively. Notice that, if d(z) is rational to start with, application of the above 
procedure will result in a rational bounded function dn+i(z) for every n, and, further 
from (2.8), in that case 5(dn+i(z)) < 8(d(z)), n > 0. ^From (2.13), the iterations 
in (2.16)-(2.17) start with 

a0{z) = l,     b0{z) = sQ = d0. (2.18) 

Using (2.16)—(2.17), it is easy to show that an(z), n = 1 —> oo, represent strict 
Hurwitz polynomials3.  In particular with dn+i(z) = 0, we have d{z) = bn(z)/an(z) 

3A Hurwitz polynomial is free of zeros in |z| < 1, and a strict Hurwitz polynomial is free of zeros 
in \z\ < 1. 
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_n+l> itself is bounded and, moreover, a direct expansion gives d(z) — wfl — 0(zr 

i.e., the power series expansions of the bounded functions d(z) and bn(z)/an(z) agree 
upto the first n + 1 terms and hence the above terms must be independent of dn+i (z). 
Thus, for every arbitrary bounded function dn+1(z), we must have the interpolation 
property 

d(z) = 
bn(z) + zaT >,)dn+1(z) 

an(z) + zbn(z)dn+1(z) 
= J2 dkz

k + 0{z n+l- (2.19) 
k=0 

and the <4's, k = 0 —>• n, can be determined from the Schur polynomials a,k(z), 
bk(z) in (2.16)—(2.18). Conversely, (2.19) is completely specified by the first (n + 1) 
coefficients {<4}jjL0 , or, from the Schur polynomials an(z) and bn(z). To complete 
the recursions in (2.16)—(2.18), only the coefficients Sk, k = 0 —> n, are required and 
they can be obtained recursively from the given data <4, k = 0 n as 

•So — "0 

and 

(2.20) 

n-l 

jk=0 

>-l) dn- n — k an-1(z)Y^dkz
k 

fc=i 
n-l 

Eh 
k=0 

(n-l)*dk 

n-l 
n > 1. (2.21) 

l-Un_i(z)£4.zA 

A:=0 n-l 

where { }n represents the coefficient of zn in { }. Using this, an(z) and bn(z) can 
be computed recursively, and the class of all bounded functions that interporate the 
given coefficients <4, k = 0 —» n is given by d(z) in (2.19). 

In general, the given impulse response data hk , k = 0 —>■ n, do not form part 
of a bounded function, and to make use of the above formulation in section II, it 
is necessary to 'prepare' this data so that it confirms with a bounded function. To 
attain this goal, consider the matrix 

Hr 

( K 0 
h0 

\ hn    hn-\ 

0  \ 
0 

h0 ) 

(2.22) 

and let \\{n) represent the largest eigenvalue of HnH*. Then, clearly, the sequence 

A hk 
d, Kn > Aj(n),     k = 0 n (2.23) 
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satisfies (2.5) with inequality, and hence qualifies as the first n -f 1 coefficients of a 
bounded function. Recursive determination of the coefficients sk , k = 0 —» n from 
(2.20)-(2.21), together with ak(z) and bk{z), k = 0 -» n using (2.16)-(2.18), gives 

^} = ^_ 6B(g) + zaw(z)dB+1(z) = £^ + 0{zn+l) (224) 

an(z) + z6n(z)(in+1(2)      fc=0 

to be the class of all transfer functions that are analytic in \z\ < 1, free of poles in 
\z\ < 1 and interpolate the given partial impulse response sequence hk, k = 0 —>■ n. 

Equation (2.24) can be given two interesting interpretations: First, if a system 
transfer function H(z) is rational to start with, then its representation as in (2.24) 
after n steps of the Schur algorithm will imply that dn+i(z) must be a rational func- 
tion. Similiarly if H(z) is nonrational to start with, then dn+\(z) must be nonrational 
in (2.24). 

The alternate interpretation shows that given h0, hi, ■ ■ ■ hn, equation (2.24) rep- 
resents all stable system transfer functions both rational and nonrational that inter- 
polate the given data, and they can be obtained by varying dn+i(z) over all bounded 
functions. Thus even if the given data corresponds to a nonrational system, the 
freedom present in the choice of dn+i(z) in (2.24) can be utilized for rational approx- 
imation of H(z) by appropriate choice of rational bounded functions dn+i(z). 

The above discussion shows that dn+i(z) can be utilized for rational system iden- 
tification as well as rational approximation of nonrational systems. In particular, if 
dn+i(z) is chosen to be a rational bounded function, then since dn+i(z) and H(z) are 
free of poles in \z\ < 1, H(z) in (2.24) represents a stable regular rational transfer 
function (analytic in \z\ < 1) that matches the given coefficients. As a result, the class 
of all stable rational functions that interpolate the given impulse response sequence 
is obtained from (2.24) by varying dn+i(z) over all rational bounded functions. 

2.2.2     The Rational Case 

If d(z) in (2.13) is rational to start with, repeated application of the Schur pro- 
cedure will result in rational bounded functions dn+i(z) that satisfy the degree con- 
straint in (2.8)-(2.9). As a result, from (2.19) and (2.24), it follows that every stable 
rational function H(z) can be represented as in (2.24) where dn+i(z) is a unique 
rational bounded function that satisfies 

8(dn+i(z))<6(H(z)), (2.25) 

and degree reduction in (2.25) happens according to (2.9). Thus if H(z) represents a 

stable ARMA(p, q) system with p > q in (2.24), then 8(H(z)) = p and since -^-^ = 0 , 

it follows from that 

S(dn+i(z))=p (2.26) 
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and further using the degree arguments as in (2.8), we obtain 

4+1 (z) = -7-T = T—  ,     n>\. (2.27) 
g(z)       l+gtz + g2z + V gPz

p 

(Since g(z) is strict Hurwitz, go / 0 and it is normalized here to unity.) Substituting 
(2.27) into (2.24) we get 

H{z) = ^   bn(z)g(z) + zf(z)än(z) =^hkzk + 0{zn+ih (228) 

an(z)g(z) + zf(z)bn(z)      k=0 

Since every rational system after repeated application of the Schur procedure has the 
above representation for any n, where f(z)/g(z) is a unique rational bounded function 
as in (2.27), we can make use of the degree constraint of H(z) in (2.28) to obtain 
this unknown bounded function. Towards this, notice that the formal degree of both 
the numerator and denominator of (2.28) is n + p, and to respect the ARMA(p, q) 
nature of H(z), we first equate the denominator coefficients of zp+1, zp+2, • • •, zp+n 

to zero. However, as shown in [18], equating the coefficients of zp+1, zp+2, • • •, zp+n 

in the denominator to zero implies that the respective coefficients in the numerator 
are also zeros. As a result, we obtain n equations from the denominator coefficients of 
zp+1, zp+2, • • •, zp+n , and p — q equations from the remaining numerator coefficients 
of zq+1, • • •, zp . Thus we have n -f p — q equations and 2p unknowns g^ , k = 1 —> p 
and fk, k = 0 —>■ p — 1. Clearly the minimum value of n is given by n = p + q and 
in that case the resulting 2p equations in 2p unknowns can be represented in matrix 
form as 

Ax = b (2.29) 

where 
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ap+q 

O-p+q-1 

0      • 
aP+q 

0 

0 

0 

0 
bo 0 

K    ■ 

■•      0 

••      0 

0    " 

0 

aq+2 

Clq + l 

Clq+3      ■ 

Clq+2      ■ 

ap+q 

"     Op+9-l 

0 
ap+q 

K-2 
K-2   ■ 

0 

ax a2     ■ flp-1 ap b* Up+q-\ h* °p+q-2 '■ K+i k 

bo 
0 b0      ■■ 

bp-2 

bp-3 

bp-i 

bp-2 

* 
%+q 

0 

a* Up+q-l 
* 

ap+q          ■ 

■■      a*q+2 a*q+l 
al+2 

0 

0 

0      •■ 

0      •• 
■       bq 

bq-l 

bq + l 

bq 

0 

0 

0 

0 
••         ap 

°; J 

,    (2.30) 

A 
X = 

and 

,    A 

9P   9P-I 

0   0 

92     9\     fp-l     fp-2 h /of 

0   a. p+q ip+i bn   bn b, 9 + 1 

(2.31) 

(2.32) 

Here cik, bk , k = 0 —> p + q represent the coefficients of the p + q degree Schur 
polynomials ap+q(z) and bp+q(z) respectively, i.e., 

ap+q(z) = a0 + aiz + a2z + 

and 

+ a p+q* 
yP+q 

bp+q(z) = b0 + bxz + b2z H + bp+qz
p+q 

(2.33) 

(2.34) 

Note that p + q represents the minimum value for the available data points n, and 
if a larger number of such data is available, then these equations can be modified to 
accomodate that situation leading to an overdetermined system of equations in (2.29). 
At the correct stage, (2.29) is guaranteed to have a unique solution that results in a 
bounded function for f(z)/g(z), and the unknown system parameters of H(z) can be 
expressed in terms of the g^s and /^'s so obtained. In fact, from (2.28), with 

H(z) = 

we get 

Q{* Qo + Qiz + --- + Qqz* _ ghzk + 0(zP+,+1; 

P(z)       P0 + P1Z + --- + PPZP 
(2.35) 

£=0 
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k fc-1 

Pk = Yl ai9k-i + Y, K-ifk-i-i,    k = 0^P (2.36) 

and 

/  k fc-1 \ 

Qfc = Kp+(,     Yl bi9k-i + Y a*n-ifk-l-i I   ,       * = 0 -> q . (2.37) 
\i=0 i=0 / 

Clearly, stability of H(z) and the interpolation property follows from the bounded 
character of dn+i(z), and since P(z) and Q(z) are computed without involving any 
spectral factorization, the nonminimum phase characteristics of H(z) if any is also 
preserved here. 

Finally, to show the uniqueness of the ARMA(p, q) form in (2.35), the degree 
reduction possibility through common factor cancellation in its numerator and de- 
nominator must be ruled out. To see this, let dn+1(z) = f(z)/g(z) represent any 
rational bounded function in (2.28). Then from (2.19) and (2.28), since the denomi- 
nator P(z) = an(z) + zdn+i(z)bn(z) is strict Hurwitz, any such common zero between 
P{z) and Q(z) = bn(z) + zdn+i(z)än(z) must be outside the unit circle. Let z0 repre- 
sent such a common zero. Then \zo\ > 1, and from P(ZQ) = Q(zo) = 0, it is easy to 
show that 

|<*„+i(*o)|>l. (2.38) 

On the other hand, referring back to P(ZQ) = 0, we have 

zodn+1(z0) =-^\ , (2.39) 
ön(Zo) 

and since an(z) is free of zeros in \z\ > 1, the function bn(z)/an(z) is analytic in 
\z\ > 1 and it is bounded by unity on the unit circle. Thus by maximum modulus 
[15], bn(z)/an(z) is bounded by unity everywhere in \z\ > 1, and in particular from 
(2.39), at z = zo, we have 

\zodn+i{zo)\ 
bn{zo) 
än(z0) 

< 1 

or |<in+i(zo)| < 1, which contradicts (2.38), implying that the numerator and 
denominator factors in (2.35) are free of any such common factors outside the unit 
circle, and hence in the entire z-plane. This proves the uniqueness of the degree 
reduction condition through the procedure described in (2.29)-(2.32). 

Equations (2.27)—(2.37) can be implemented provided p and q are known. Usu- 
ally the model order (p, q) is unknown, and that will have to be evaluated from the 
given data. As we show below, the invariant characteristics of the rational bounded 
function dn+i(z) in (2.26), together with the Schur update rule in (2.12) can be used 
to determine the model order. 
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2.2.3    Model Order Selection 

Having determined dp+q+x{z) = f(z)/g(z) as in (2.29)-(2.32), the bounded func- 
tion dp+q+2{z) at the next stage (n = p + q + 1) can be evaluated in a similar manner 
from the Schur polynomials ap+q+i(z) and bp+q+i(z). In fact, letting 

dpW(z) = ^ = (£ c***) / (£ e,/) (2.40) 

from (2.28), we also have 

H{z) = Wl • Wi(*M*) + *wi(*M*) (2.41) 

VHH-i(*)eW + 2r6p+(?+i(2;)c(0) 

and as before e(z) and c(z) can be evaluated by equating the coefficients of zp+1, 
zp+2, ■•-, z2p+q+1 in the denominator and z?+1, z9+2, ■ • ■, zp in the numerator to 
zero4. Once again, these equations possess a unique solution at the correct stage for 
the unknowns e^, k = 1 —> p, Ck, k = 0 —> p — 1, (with e0 = 1), and they result in a 
bounded function in (2.40). Notice that both these bounded functions dp+q+i(z) and 
dp+q+2(z) are of degree p, have the same form as in (2.27), and are related through the 
Schur rule as in (2.12). dp+q+2(z) makes use of additional information hp+q+i about 
the system, through the new Schur polynomials. Substituting these two bounded 
functions into (2.12) and simplifying, we obtain 

f(z) = /oe(z) + zc(z) *2 42> 
g(z)       e(z) + zf^c(z) ' 

Equation (2.42) relates the coefficients of the bounded functions at two consecutive 
stages, and equating the ratios of like powers on both sides of (2.42) and rearranging, 
we obtain the conditions 

ek(p,q) = 0,     fc = 0->p-l, 

where 

eo(p, q) = foeP + Cp-i (2.43) 

and 

W,q) =  —ji ,     fc = l->p-l. (2.44) 
efc + /oc/c-i      9k 

4Although this results in (2p + 1) equations in 2p unknowns, since the coefficient of z2p+g+1 is the 
same as (2.43), the remaining 2p equations are implemented in our computations. 
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These conditions are a direct consequence of (2.26), and reflect the ARMA(p, q) nature 
of the problem. Since the first stage where (2.43) and (2.44) are satisfied occurs at 
the correct stage, by updating p and q sequentially starting with p > 1 and q < p, 
the true model order can be found as the smallest integers p and q that satisfy 

to{p,q) = 0, 

or, more genreally 

<P,?) 
N 

I;MP.9)I
2
 = 0- (2.45) 

fc=0 

The key feature of a rational system - its degree - is exploited here in determining 
the true model order and system parameters. 

The nonminimum phase stable rational transfer function examples in Figs. 1-2 
highlight all important aspects of the algorithm described in this report. The unknown 
system is assumed to be ARMA(n, m) with n > m, and initialization begins with n = 
1, m = 0. Preparation of the given impulse response sequence hk, k = 0—*n + m + l, 
is first carried out to generate dk = /ifc//vn+m+i, fc = 0—>n + m + lasin (2.22)-(2.23). 
Computation of the Schur polynomials an+m+i(z), bn+m+i(z) using (2.16)—(2.17) and 
(2.20)—(2.21), followed by those of the bounded functions dn+m+i(z) = f(z)/g(z) and 
dn+m+2(z) = c(z)/e(z) then allow e0(n,m) and e(n,m) to be evaluated using (2.43), 
(2.45), provided both dn+m+i(z) and dn+m+2(z) exist as bounded functions. The heavy 
dots on all curves in Figs. l(c)-2(c) indicate the presence of such a stage (n,m), and 
if such is not the case that particular stage is skipped and the indices n and m are 
updated. Notice that to(n, m) and e(n, m) are guaranteed to exist at the correct stage 
n = p and m = q, and since the first place where eo(n, m) and e(n, m) equal zero also 
occurs at the correct stage, sequential updating of n and m continues until substantial 
relative minima in the values of 6o(n,m) and e(n,m) are observed to occur for the 
first time. The corresponding pair (n,m) is then identified as the model order (p,q) 
and the system parameters are computed from (2.35)-(2.37). Finally, to facilitate 
comparison, the exact magnitude \H{e^B)\ and its reconstructed counterpart (dotted) 
are plotted in Figs. l(a)-2(a). Similarly, the exact phase (f)(6) and the reconstructed 
phase (dotted) are plotted in Figs. l(b)-2(b). 

Although the theoretical development in section III assumes p > q, as the MA(5) 
example in Fig. 2 shows, every case where q > p can be detected as an ARMA(q,q) 
system. This means of course that some of the reconstructed coefficients in the 
denominator are filled in automatically as zeros, to raise the denominator degree to 
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2.3    Stable Rational Approximation of Nonrational Systems 

A nonrational system has a transfer function that, unlike the rational systems, 
cannot be expressed as the ratio of two polynomials of finite degree. If such a system 
is stable, then it admits a power series expansion in \z\ < 1, and the problem is to 
represent this by a rational system in some optimal manner. As remarked in the 
introduction, although Pade approximations can achieve this goal, such approxima- 
tions need not guarantee stability. Moverover, the Hankel matrices generated from 
the impulse response data has no particular rank invariant structure in this case. 
In this context, once again we can make use of (2.24) to obtain all stable rational 
solutions to this problem. 

To start with notice that the Schur extraction principle in (2.12)—(2.13) is per- 
fectly general and hence if H(z) is nonrational, then the representation in (2.24) 
is still valid, where dn+i(z) in that case represents a nonrational bounded function. 
Interestingly, as remarked there, if dn+i(z) is replaced by any rational bounded func- 
tion, we obtain a stable rational transfer function Hr(z) that interpolates the given 
impulse response sequence {hk}1=0. This key observation can be used to determine 
interpolating rational systems with minimum degree. 

Since Pade approximations preserve the optimal degree character, if such ap- 
proximations are also stable, then they must follow from (2.24) for a specific ratio- 
nal bounded function dn+1(z). To determine such bounded functions, let dn+i(z) = 
f(z)/g(z) represent a degree m bounded function that when substituted into (2.24) 
generates an ARMA(p,q) Pade-approximation Hr(z). Thus 

HT{Z) = ^4 = *» •  b^Z^) + Z~an(z)f(z)   =    »    hz, + (246) 
P{z) an(z)g(z) + zbn{z)f(z)      k=0 

For (2.46) to represent the Pade approximation, we must have p + q < n, and once 
again to respect the ARMA(p, q) nature of HT(z), the polynomial f(z) must be of 
degree m — 1 and hence g(z) must be of degree m. Thus the formal degrees of P(z) 
and Q(z) in (2.46) are n + m, provided 8{an(z)) = n, and hence the coefficients 
of zp+1, ■ ■ ■ , zn+m in the denominator, and the coefficients of zq+1, • • • , zn+m in the 
numerator must be zeros. It can be shown that the coefficients of zm+1, • • •, zn+m 

in the numerator and denominator generate the same equations and hence this gives 
n + (m — p) + (m — q) = n + 2m — (p + q) equations in 2m unknowns. Since n > p + q, 
there are at least 2m equations and they can be used to solve for the unknowns. ^From 
the above degree argument m — p > 0 and m — q > 0, or m > max(p, q), and hence for 
a given p, q (with p> q), the least complex bounded function dn+i(z) is also of degree 
p. In that case, the desired bounded function dn+i(z) has exactly the same form as in 
(2.27), and the system of equations so obtained has the functional representation in 
(2.29)-(2.32). However, unlike the rational case, the system of equations so obtained 
need not yield a solution for g(z) and f(z), and even if a solution exists there, g(z) so 
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obtained need not be strict Hurwitz, and further f(z)/g(z) need not turn out to be 
a bounded function. However, for some p, q, if f(z)/g(z) turns out to be a bounded 
function, then Hr(z) in (2.46) represents a stable ARMA(p, q) Pade approximation to 
the given nonrational function. Thus every stable Pade approximation to the given 
data has the representation 

Mt) =  |4 = ^,W*M') + *W*)/(*)   =  £ hkZ> + 0{zn+1) ^ (247) 
r{z) ap+q(z)g(z) + zbp+q(z)f(z)      k=0 

where n > p + q, and f(z)/g(z) represents a bounded function given by (2.29)-(2.32). 
We summarize the above observations as follows: 

The necessary and sufficient condition for the existence of a stable ARMA(p, q) Pade 
approximation to the impulse response sequence {hk]Vk=o is that the system of linear 
equations in (2.29)-(2.32) generated from the associated Schur polynomial coefficients 
yield a bounded solution of degree q for f(z)/g(z) in (2.27). In that case, (2.35)-(2.37) 
and (2.47) represent the desired stable transfer function. 

Interestingly, the above remarks raise the following question: Given an H(z) that 
represents a stable (nonrational) system transfer function, does there always exist a 
stable ARMA(p, q) Pade approximation for some p and ql Clearly, if such a solution 
exists, then that must follow from (2.47) with n > p + q for a rational bounded 
function f(z)/g(z) of degree p, that is obtained by solving the system of equations in 
(2.29)-(2.32). 

Although it is easy to show that the strict Hurwitz character of g(z) must occur 
infinitely often, indicating the possibility of the desired bounded function in (2.46)- 
(2.47), unfortunately, nothing more specific can be said about the bounded character 
of dn+i(z) = f(z)/g(z). In fact, given hk, k = 0 —> n, there might exist no stable 
Pade approximation, and, moreover, the lowest nontrivial stable rational approxima- 
tion that matches the given data might be of ARMA(n,n) form which corresponds 
to dn+i = 0 in (2.24). However, so long as f(z)/g(z) is chosen to be a rational 
bounded function in (2.46), it represents the class of all stable rational transfer func- 
tions that interpolate ho, h\, ■ ■ ■ hn. Thus even if stable Pade approximations and 
absent in a particular situation, by relaxing the Pade constraint, other stable rational 
approximations can be obtained. 

Figs. 3-4 as well as our extensive computations involving nonrational systems 
containing logarithmic and essential singularities seem to indicate that stable Pade 
approximations always exist. In the simulations presented here, the original nonra- 
tional function H(z) is used to compute hk, k = 0 —> p + q, and it is first 'prepared' 
to generate <4, k = 0 —» p + q, as in (2.22)-(2.23) and thereby the Schur poly- 
nomials ap+q(z) and bp+q(z). From the above theorem, since a stable ARMA(p,q) 
Pade approximation to this data must follow from (2.47) for a bounded solution of 
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f(z)/g(z) given by (2.29)-(2.32), those equations are verified for such a solution, and 
the indices are updated in a sequential manner. The heavy dots in Figs 3(c)-4(c) 
indicate the presence of such a stage, where (2.29)-(2.32) yield a bounded solution 
for dp+q+i(z) = f(z)/g(z) that results in a stable Pade approximation. Further, if the 
two consecutive rational functions dp+q+i(z) and dp+q+2(z) turn out to be bounded 
and are related as in the Schur algorithm, then e0(p,<?), £fc(p,q) will be zero. When 
H(z) is known in advance, the percent spectral error 

\H(e^)\2-\Hr(e^e)\2 

r](p,q) = sup    (2.48) 
\H{e>B)\< 

also may be used for model order selection. Notice that Fig. 4 represents a transcen- 
dental nonminimum phase system (zero at the origin) with a logarithmic singularity 
at z = 1. Nevertheless, as seen from Figs. 4(a)-(c), the ARMA(14,4) Pade ap- 
proximation is stable and preserves the nonminimum phase character of the original 
system. The abundance of stable Pade approximations are evident in Figs 4(c)-5(c). 
Nevertheless a rigorous proof is still lacking in the general case regarding the bounded 
character of f(z)/g(z) for some p, q, and the issue remains unresolved. 

2.4 Conclusions 

This report investigates the problem of obtaining all stable rational solutions that 
interpolate the given partial impulse response sequence by making use of the well 
known theory of bounded (Schur) functions. In this context, a new test criterion is 
developed to determine the model order of rational systems, and thereby determine 
their system parameters from the given impulse response sequence. The theory de- 
veloped is further utilized to obtain the necessary and sufficient conditions for stable 
Pade approximations of nonrational systems. A practical algorithm is developed that 
translates the stability condition into the bounded character of a rational function 
generated from a set of linear equations obtained from the Schur polynomial coeffi- 
cients associated with the given impulse response sequence. Interestingly, since the 
present technique does not make use of any factorization procedure, the nonminimum 
phase characteristics of the original system are preserved here. 
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Figure 1: Reconstruction of a nonminimum phase ARMA(7,6) model from its partial 
impulse response sequence. The original model corresponds to 

H{z) = 
0.602 - 2.206,2 + 4.160z2 - 4.952z3 + 4.366z4 - 2.721z5 + 0. 

1.0 - 3.511z + 6.438z2 - 8.052z3 + 7.875z4 - 6.018z5 + 3.186z6 - 0.888z 7 " 

Poles of H{z) are at 1.02Z00, l.OlZ ± 35°, 1.01Z ± 51° and 1.03Z1000. 
Zeros of H{z) are at 1.02Z ± 22° , 0.769Z ± 43° and 1.05Z ± 90°. 
The reconstructed model is given by 

0.602 - 2.206z + 4.160z2 - 4.952z3 + 4.366z4 - 2.721z5 + 0.888z6 

r^Z> ~ 1.0 - 3.511z + 6.438z2 - 8.052z3 + 7.875z4 - 6.018z5 + 3.186z6 - 0.888z7 
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Figure 2:   Reconstruction of an MA(5) model from its partial impulse response se- 
quence. The original model corresponds to 

H{z) = 0.8704 - 2.4714z + 3.5782z2 - 3.6560z3 + 2.0357z4 - 1.0z5. 

Zeros of H{z) are at 0.667Z00 , 0.952Z ± 60° and 1.2Z ± 80°. 
The reconstructed model is given by 

HJz) 
 0.8704 - 2.4714z + 3.5782z2 - 3.6560z3 + 2.0357z4 - l.Oz5  

1 + 2.1 x 10-17z - 1.5 x 10-16z2 + 4.1 x 10~15z3 + 2.6 x 10~14z4 + 7.2 x 10~14z5 
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Figure 3: Rational approximation of a nonrational system. The original nonrational 
transfer function is given by 

H(z) = Hx{z)t~* + H2(z)e-lz-V 

where 

Hi(z) = 
1.1 + 2 

1.02-1.75z + z2 , H2(z) = 
1.04-1.31z + z2 

1.09 - 0.910 + 1.06z2 + 1.03z3 - 0.86z4 + z5 

The stable Pade approximation ARMA(11,11) model is given by Hr(z) = Bm(z)/An(z) 
where 

An(z)   =   1-2.111z + 2.351z2-0.265z3-1.869z4 + 2.459z5-1.078z6 

+0.119/ + 0.228/ + 0.0557z9 + 0.0059z10 + 0.00026z11 , 

Bm(z)   =   3.571 - 9.609z + 15.720z2 - 12.974z3 + 7.440z4 - 2.243z5 + 1.227z6 

-0.555z7 + 0.126z8 - 0.0188z9 + 0.0016z10 - 0.00006; .11 

Zerosof/ln(z)areatl.01Z±30o, 1.007Z+78.90, 1.0256Z+600, 7.29Z+1620 , 8.066Z+ 
45° and 1.019Z1800. Zeros of Bm(z) are 0.782Z ± 53.2°, 1.107Z ± 55°, 2.309Z ± 
123°, 6.512Z ± 67.5°, 10.17Z ± 24° and 3.37Z0.00. 
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error 
dB 

i 1 1 r 
1,0    6,2   8,6   10,9   12,11 

i r 
15,9   17,1       18,18        20,20 

(n,m) 

(c) Test criteria for model order selection 

Figure 4: Rational approximation of a nonrational system with a logarithmic singu- 
larity at z = 1. The original nonrational transfer function is given by 

H(z) = 
0.797 - 1.036z + 0.829z2 

1 - 1.470z + 0.946z2 + 0.841z3 - 1.277z4 + 0.829z5 
ln(\ - z) 

Poles of H(z) are at 1.03Z ± 39.6°, 1.04Z ± 61.2° and 1.05/180° . Zeros of H(s) 
are at 0.98Z ± 50.4° . 

The stable Pade ARMA(14,4) model is given by Hr{z) — Bm(z)jAn(z), where 

A, =   1 - -2.8536z + 3.3370z2 - 0.9590z3 - 2.1421z4 + 2.9183z5 - 1.5714ze 

-0.2655z70.0188z8 + 0.0053z90.0022zlo0.0011z11 +5.21 x 10~4z -4 „12 

1-4 „13 -5 „14 +2.11 x 10~VJ + 5.35 x 10"az 

Bm(z)   =   -0.0009 - 0.7955z + 1.7398z2-1.7455z3 + 0.73305z4. 

Zeros of Bm{z) are at 0.98Z ± 50.4°, 1.1323Z0.00 and 0.0011Z180.00 . 
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3.     Stacked Pie^ocermaic Actuators for Active Damping 

3.1 Introduction 
Utilization of active materials for vibration damping is recently receiving increased 

attention [1-6,25]. Research and development of completely integrated structures 
with embedded actuators, sensors, signal processing, and control systems are of prime 
interest. Different electroactive materials such as piezoceramics, shape memory alloys, 
electrorheological fluids, polymer biomaterials, and magnetorestrictive materials are 
being considered for such purposes. Piezoelectric ceramics are effective distributed 
strain actuators as well as sensors due to their high stiffness, good linearity, ease of in- 
tegration, low temperature sensitivity, and relatively low noise. In this report, stacked 
piezoceramics are mainly considered for actuation purposes. Also, piezoceramics with 
interdigitated electrodes are considered [8,9]. Dynamical models of stacked piezoce- 
ramics are reported. Several experimental setups (ranging from beams and plates to 
multi-link flexible manipulators) have been developed to study modeling and control 
of smart structures at the CRRL. 

One of the main issues in smart structures is the control system. Foremost in the 
design of advanced control systems is the need to satisfy performance specifications. 
In fact, one often sacrifices stability margin or accepts conditionally stable systems in 
order to realize superior performance. So one should begin with an optimal solution 
according to some measure. In the present work, an Hi measure is considered. When 
the optimal solution exceeds specifications, the cost functional can be increased and 
the increment traded for an improvement in stability margin. That is, one should 
maximize stability margin subject to a constraint on the H2-norm cost increment. 
When the stability margin obtained in this way is not adequate, then one must use a 
different controller for different operating profiles of the plant: typically, one should 
not give up performance just for the sake of operating with a single fixed controller 
when high performance is required. In order to attain an analytical solution to this 
fundamental tradeoff problem, the approximate measure of stability margin chosen is 
also a quadratic cost function. A complete derivation of the results for the advocated 
control system is given in [20]. 

This new control design methodology for tradeoffs between stability margin and 
performance is applied to vibration damping and pointing of smart structures. These 
systems do provide nice benchmark problems in control system design. The afore- 
mentioned control design methodology is applied to a flexible pointing system with 
embedded active materials and experimental results are presented to show the efficacy 
of the control design methodology and the added advantage of utilization of active 
materials. 
3.2 Stacked Piezoceramic Elements 

In this section, the dynamical model of stacked piezoceramic elements (e.g., plates, 
discs, etc.)  attached electrically in parallel is developed.  A typical stack of discs is 
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Figure 3.1: A stack of N-piezoceramic discs. 

shown in Figure 3.1 where the piezoceramic elements are assumed to be polarized 
through their thickness. The electric work done by each element of the stack is 
derived to generate the dynamical model and to calculate the force generated by the 
stack. 

The strain through the piezoelectric ceramic is expressed as 

S — [ S\   S2   S3   S4   S5   5*6 J   — Lh (3.1) 

u>x    U"y    ^2 where (■)' denotes the transpose, Lu is a 6x3 differential operator, and u 
is a 3 x 1 displacement vector. 

The constitutive relation between the stress (T), strain (S), electric field (E), and 
electric charge distribution (D) in each of the piezoceramic elements is given by 

T 
D 

' cE -e'~ 

e es 
s 
E 

(3.2) 

where cE is the stiffness matrix of the piezoceramic taken at constant electric field, 
es is the matrix of dielectric constants taken at constant strain, and e is the matrix 
of material constants of the piezoceramic. All quantities are taken with respect to a 
local coordinate system pertaining to the direction of polarization. 

The kinetic and potential energies of an element in the piezoceramic stack are 
given respectively as 

T = -ps /    uii  dfl,     and     U = -       S'T 
2    JQS 2 Jn, 

dn (3.3) 

where ps is the mass volume density of the piezoceramic element and fis denotes the 
spatial boundary of the section of the piezoceramic. 
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Replacing T by its equivalent from Eq.(3.2) simplifies the expression for the po- 
tential energy into 

U = \ I (S'cES - S'e'E)dtt. (3.4) 
2 Jn3 

The electric work done by the charge in each element of the stack is expressed as 

We = \ (   E'D du. (3.5) 
2 JQS 

Replacing D in the above equation by its value in Eq. (3.2) yields 

We = - /  E'eS d£l + - f  E'esE du (3.6) 
2 Jüs 2 Jü3 

where the first term signifies the actuation capability and can be expanded as 

Wad = ^- I   (e3iSi + e32S2 + e33S3) dÜ. (3.7) 

where the first subscript refers to the direction of the electric field and the second 
refers to the direction of the strain. The 3-direction is the direction of polarization 
(here corresponding to the x-direction), the 2-direction corresponds to z and the 1- 
direction corresponds to y Note that S4 = S& = SQ = 0 signifying the absence of 
shear stresses. 

For brevity, the piezoceramic elements are assumed to be identical and of a simple 
geometry (e.g., discs or plates) in the following analysis. Furthermore, the average 
electric field through each of the elements can be expressed as1 

E 0   0 (3.8) 

where V is the applied voltage and tv is the thickness of the piezoceramic element. 
The dominant strain is in the direction of polarization (i.e., the 3- direction). 

Hence, one can assume that only 5*3 is non-zero. It then follows from Eqs. (3.4) and 
(3.8) that 

u =    -^4pc33 /        S3  dx — /        5*3 dx 
Z                 Ja                                           Zip        Ja 

1A E r+h (a    .   y , 
=   2   P

CS3
J        \~dxUx^X't'l 

2tp        la            {dxU^t])      dX (3.9) 

1We consider uniform field through the piezoceramic since thin elements are normally utilized. 
However, the non-uniform field may similarly be handled. 

40 



where a and a + tp are the spatial limits of the piezoceramic element along the x-axis 
and Ap is the area of the faces of each of the piezoceramic elements constituting the 
stack. 

Similarly, the component of displacement of largest significance is u3 (x-direction); 
therefore, by neglecting the displacements in other directions, the kinetic energy sim- 
plifies into 

T = \psApJ*+tpül{x,t) dx (3.10) 

Finally, the total kinetic and potential energies of the stack are obtained by summing 
up those of the individual piezoceramic elements given in Eqs. (3.9) and (3.10). There- 
after, Hamilton's principle may be invoked to derive the dynamics of the piezoceramic 
stacks2. Furthermore, a discretization of the distributed parameter model may be per- 
formed to obtain a lumped parameter description of the piezoceramic stacks. This 
may be achieved through an assumed mode approach on the displacement, i.e., 

m 

ux(x,t) = ^2</>i(x)r)i(t) (3-11) 

where m is the number of retained modes, the <j>i(x) are the mode shape functions 
and the 7/,-(i) are the amplitude functions. 

The following analysis establishes the level of force such piezoceramic stacks may 
generate. Neglecting all strains in other directions than the polarization direction, 
the work done by the actuator given in (3.7) can be simplified to 

Wact 
VApe33  r

+t 

zip 

ra+tp 
/        S3dx. (3.12) 

Ja 

Approximating the strain through the length as a constant, it can be expressed as 

Ss = ^ (3.13) 

where L is the total length of the stack and AL is the change in length of the stack 
due to an applied electric field. Then the expression for the actuation capability of 
each element becomes 

^ = VA^AL (3 M) 

Remark: the total actuation of the stack is N x Wact. 

2Tip mass energy and spring energy due to preload may also be added. 
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To compute the force generated by one element of the stack, consider the mechan- 
ical work done: 

W= f   F-du (3.15) 
JQS 

where F — [Fx Fy Fz] is a three dimensional vector with 

Fx   =    I    I   T3dydz, (3.16) 

Fy   =    f    f   Txdxdz, (3.17) 

Fz   =    I   f   T2dxdy, (3.18) 

and Q,x,Q,y and Qz are the spatial domains of the piezoceramic element along the x, 
y and z axes respectively. In Eq. (3.15), u is the displacement vector which can be 
expressed in terms of the normal strains (in its local coordinates) 

u = =    S3x   Siy   S2z    ■ (3.19) 

When the strain components are constant along their respective directions throughout 
the piezoceramic stack, du can be expressed as 

du =    S3dx   Sidy   S2dz     ■ (3.20) 

Thus, the mechanical work becomes 

fa+tp FxS3dx + /   FyS^dy + /   FzS2dz ■ (3.21) 
Ja JUV JQZ 

ra+t 
w    ■ 

Since the component of the force being considered (x-component) is much larger than 
the other two force components, Eq. (3.21) may be approximated by 

W =  fa   P FxS3dx- (3.22) 
Jo 

Having a constant force Fx along the x-direction, it may be computed by equating 
the actuation energy to the mechanical energy to obtain 

Fx = ^p£e33 = ^p- (3.23) 

This is the force due to each of the elements in the stack; therefore, the total force 
exerted by the stack is 

Fx - —^- ■ (3.24) 
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Figure 3.2: A piezoceramic plate with interdigitated electrodes. 

If the stack is preloaded with a spring of stiffness cs, e33 in Eq. (3.24) changes to 633 
where 

e33 

and 

cT 

cT + c: 
■e33 

NAn 
CT = c33- 

L 

(3.25) 

(3.26) 

3.3    Piezoceramic Plates With Interdigitated Electrodes 

In this section, a model of a piezoceramic plate with interdigitated electrodes is 
presented. Fig. 3.2 gives the top-view of a piezoceramic plate with interdigitated 
electrodes. The interdigitated piezoceramic is a special case of the aforementioned 
stacked actuators. The energy expressions are needed to compare the actuation capa- 
bilities of the piezoceramic with interdigitated electrodes to those of a piezoceramic 
with face-plane (conventional) electrodes. 

Taking advantage of the symmetry of the interdigitated pattern, one first considers 
a section of the piezoceramic including one electrode of each polarity (Figure 3.3.) 
Furthermore, since the thickness of the section is small with respect to the spacing 
between the electrodes, the transverse component of the electric field is neglected 
and an average value of the longitudinal component will be considered. The electric 
potential at all points under an electrode is equal to that of the electrode; therefore, 
no electric field is considered in these areas. Hence, the average electric field through 
a section lies in the area between the electrodes and is given by E = — where V is the 
applied voltage to the electrodes and g is the distance between electrodes of opposite 
polarity. 
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Figure 3.3: A section of the interdigitated-electrode piezoceramic. 

The assumptions made here reduce the piezoceramic with interdigitated electrodes 
to a stack of identical piezoceramic sections with each section as shown in Fig 3.3. 
Therefore, the results of Section 3.2 are applicable here. 

Since thin piezoceramic sections are of main interest, the dominant strain is in 
the 3-direction (along the length); therefore, from Eq. (3.12) the actuation energy of 
each section is given by 

J^ = ^»r's*fe (3.27) 
2g       Ja 

where ws and ts are the width and thickness of the piezoceramic section and a and 
a + g are the spatial limits of the section along the x-axis. The expression for the 
potential energy, kinetic energy, and force generated by N piezoceramic sections is as 
given in Eqs. (3.9), (3.10), and (3.24), respectively, with Ap replaced by wsts. 

To compare the actuation level of a piezoceramic with interdigitated electrodes 
to those of a conventional piezoceramic plate with face plane electrodes, consider 
two piezoceramic plates with the same length, width and thickness, lp, wp, and tp, 
respectively. In the case of the interdigitated piezoceramic, the dominant strain is 
in the 3-direction whereas the dominant strain of the conventional piezoceramic is in 
the 1-direction. Comparing the actuation of the proposed piezoceramics yields 

Wacti    =   ~^- 2^=1 Ja, e33^3 
TJ/ Vwptp   ra+lp Q \   •      ) 
Wactc 2t       Ja e3Wl 

where Wacti is the actuation level of the ceramic with interdigitated electrodes, Wactc 

is the capability of the conventional piezoceramic, N is the number of section in the 
interdigitated piezoceramic, and a; is the spatial limit of the ith piezoceramic section. 
Normalizing electric fields and taking tp = 2ts simplifies the expression into 

Wgctt = wse33Z?=1 r,'+g ^3 ,3 29, 
Wactc 2wpe31f:+l"S1 

Similarly, comparing the forces resulting from both ceramics yields 
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Figure 3.4:   Comparison of actuation levels due to conventional and interdigitated 

piezoceramics. 

EL 
Fr 

NwstsEe33 

wptpEe3i 
(3.30) 

where F{ is the force exerted by the interdigitated piezoceramic and Fc is the force 
due to the conventional piezoceramic. Note that for a normalized field and tp = 2is, 
the ratio simplifies to 

F) _ Nwse33 

Fc       2wpe3i 
(3.3i; 

To compare the performance in vibration damping of the two proposed piezo- 
ceramic plates, attach each of them to an identical clamped-free beam at identical 
positions. Fix the width te of the fingers of the interdigitated electrodes and let 
te = tp. The actuation energies of the two piezoceramic plates are compared us- 
ing Eq. (3.29) and the mode shape functions of the clamped-free beam (normalized 
electric field). Figure 3.4 shows the ratio Wactt/Wactc for different values of g/te. 

3.4    Wiener-Hopf Design 

An analytical solution to the tradeoffs of performance versus stability margin has 
been attained and reported in [20] (in these proceedings). The approach is based on 
H2 measures of performance and stability margin. Furthermore, a novel approach 
is also introduced which allows structured perturbations in the coprime polynomial 
matrix fraction description of the plant transfer matrix to be taken into account. The 
reader is referred to [20] for details. 
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Figure 3.5: Simulation results for open and closed-loop system. 

3.5     Simulation and Experimental Results 

An interdigitated electrode pattern was deposited onto each side of a PZT, Pb(Zr, T/)03, 
plate. The PZT plate was of type 5H, manufactured by Morgan Matroc, Inc. The 
electrodes were deposited onto the PZT by evaporation. First, the area which was 
to remain unelectroded was covered with a stainless steel mask. We assured that the 
electrodes on both sides of the PZT plate were aligned through a registration scheme. 
Thereafter, a layer of nickel was deposited on each side of the ceramic; nickel provided 
a strong bond to the ceramic whereas the conductivity of the resulting electrode was 
not sufficient. To improve the conductivity of the electrodes, a layer of gold was 
deposited over the nickel resulting in a maximum resistance of 15 Ohms along any 
pair of electrodes.  Electrical contact was established through the use of a two part 
conductive glue. 

A controller based on the Wiener-Hopf (i/2) design methodology is designed 
for a clamped-free beam with an interdigitated piezoceramic actuator and a con- 
ventional piezoceramic sensor. Perfect bonding between the piezoceramic actuator 
(2.5" x 1.5" x 0.020") and the rectangular aluminum beam (17" x 5" x 1/16") is as- 
sumed, so that the overall model is not affected by the adhesive layer. The sensor is 
mounted further above the actuator and due to its non-collocation with the actuator, 
a non-minimum phase plant is attained. The analytical modeling and the experi- 
mental results do match with each other. The parameters in the Wiener-Hopf design 
were chosen such that the advocated controller was not proper. The controller has 
four zeros and three poles. This was done in order to achieve velocity feedback for a 
better active damping of the structure. The controller is as follows: 

Cw (s) =- 
0.188s4 + 63.56s3 + 3754.7s2 + 387420s + 3560400 

s3 + 171.1s2 + 4997.7s +11452 
(3.32) 

The open and closed-loop responses of the structure for an impulse type force distur- 
bance at the tip of the beam is shown in Fig. 3.5. The applied electric field does not 
exceed 15 Kvoltsjin. 
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Expwwnenl»! Closed and Open-Loop RssportMS 

Figure 3.6: Experimental open and closed-loop responses. 

The obtained controller was tested on the experimental setup at the CRRL. The 
controller was discretized and implemented by a '486 based PC with a sampling 
period of 2 msec. The DAC output was filtered with a second-order filter having a 
natural frequency of 150 Hz. A high voltage amplifie was used to step up the control 
voltage to the piezoceramic actuator. The open and closed-loop responses are shown 
in Fig.3.6. A significant improvement in the settling time of the system has been 
achieved. We are currently implementing controllers on a flexible pointing system. 

3.6 Conclusions 
Dynamical models of stacked piezoceramic actuators were established. The stan- 

dard piezoceramic stack actuators and the interdigitated electrode patterns were con- 
sidered. The stacked piezoceramics were utilized for active structural damping. A 
new robust control design methodology based on H2 design was advocated and shown 
to be an effective design methodology. 
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